MacGyver Season 2 Episode 2 Science Notes: Muscle Car + Paper Clips

What is an EMP?

This is an offensive weapon called an Electromagnetic Pulse (I guess the M is in there too). The idea is to generate a short, but very high intensity electromagnetic wave.

There are all sorts of EMPs, but let’s consider the one that you are mostly likely familiar with—a lightning strike. Have you ever had lightning hit near your house? If you have, you might find that some of your electronic devices no longer work. That sucks, doesn’t it?

Mostly likely what happened was a spike in the electric current in the house. When the lightning strikes, it makes a very large change in magnetic field (associated with the giant current from the bolt). This changing magnetic field can create an electric current.

Check this out. I have a loop of wire and a magnet. As I move the magnet into the loop (or out of it), a current is created.

That’s sort of what happens with your house. But what about the EMP? Same idea—except MORE change in magnetic field. It’s possible to make an EMP that is strong enough to take out the circuits of a bunch of things. Yes, like a plane.

Is it possible to make an EMP that’s handheld? Yes, that’s possible—but it wouldn’t be super strong. Bigger is better.


I had no idea that “the thing” existed—at least not until the awesome MacGyver writers told me about it. I read the script and said.

What. What? WHAT? Is this real? How did I not know about this? What the heck!

The Thing is a cold war era spy device. It was a passive listening device that the Soviets hid in a wood carving of The Great Seal. You can’t make this stuff up—it’s too real.

The basic device consists of a conducting cavity with a membrane. When a particular microwave frequency is aimed at the device, sound will move the membrane and change the reflected wave. The change in the reflection will be interpreted at sound. This site has a much more detailed explanation.

OK, but could MacGyver build one? Yes. Especially in the Phoenix lab. Honestly, I was going to build one for fun. However, it’s tricky to get the size and stuff just right in order for it to work. It would be fun to build a working model though.

Hackable cars.

Sadly, this is all too real. Yes, you can indeed hack a car.

Older cars don’t have computers in them. You can’t hack plain metal and gasoline.

Pacemaker from a phone and an amplifier.

Could you hack someone’s pacemaker? Probably not—but it’s at least possible. My first guess is that you wouldn’t have any type of network connection on your pacemaker, but maybe you would. What if you want to modify how it works without actually taking it out of the human body? In that case, you would have to communicate with the pacemaker somehow—right?

OK, so the dude got hack. He needs a temporary pacemaker. MacGyver takes some paperclips to use as electrodes and connects them to the car’s audio amplifier. He then generates a 1.7 Hertz audio signal with his phone. The idea is that the audio “sound” generates electrical signals that stimulate the heart into work.

Would this actually work? Maybe? Honestly, I wouldn’t want to try this in real life.

MacGyver Season 2 Episode 1 Science Notes: DIY or DIE

I’m kicking myself. I should have been writing these MacGyver notes for each episode as they aired on TV. But no. I had to make things more complicated. Well, here I am—starting the notes for season 2.

Let’s just jump in. Note: there’s some pretty good stuff in this one.

Blade from a button.

MacGyver takes a button from his shirt and breaks it in half. From this half button he sharpens the edge so that it can cut through a rope.

I wouldn’t normally include this one in the blog since there’s not much science to talk about—but I’m just excited.

Flare-based harpoon and winch.

MacGyver takes a metal rod and puts it in an empty dip stick tube from an engine. He adds the powder from a road flare to act as a propellant. This would then launch the improvised harpoon forward.

Once the harpoon is stuck into a fleeing car, Mac wraps the cable around the horizontal axle on the sidecar to a motorcycle. As the axle spins, the cable wraps around it and pulls the motorcycle closer to the car.

Mini gun as a starter motor.

They need a car. MacGyver finds one—but it’s missing a starter motor. Really, there is nothing super special about a starter motor. It’s just a DC motor that is strong enough to turn over the engine so that it can turn itself (using gasoline).

The mini gun also uses an electric motor. In this case, the motor spins a combination of gun barrels so that the fire rate can be higher than a normal machine gun.

Could you use one motor for another application? Theoretically, yes. The only tough part might be mounting the motor (which MacGyver does with some wire—wire is often better than duck tape). The other problem is making sure the gears on the motor match up with the gears on the car to turn over the motor—but it’s still possible.

Run up a wall with a pole

Sometimes, there are hacks that look too crazy to be true—but in fact would totally work. Here is an example of such a hack.

MacGyver and friends take a long pole. MacGyver gets on one end near a wall and the other two push the pole towards the wall. This allows MacGyver to walk up the wall.

But wait! Here is a video of this trick being used in real life by a Vietnamese SWAT team.

Here is my super short explanation.

  • If you push someone against a vertical wall, there will be a frictional force pushing UP.
  • If the push is great enough, this upward frictional force can be equal to the gravitational force.
  • Boom. That means a person can walk up a wall.

Here is a force diagram of that situation.

Spring 2017 Sketches key

Oh, I also made a video to show you how this works.

Finally, here is a more detailed explanation from my WIRED blog.

Cell phone in a soccer ball.

Ok, you can put a camera in a ball and kick it through a window. Not really much of a hack, but clever.

Improvised diver propulsion vehicle.

MacGyver needs to get through a submerged passage—it’s long enough that he can’t swim the whole way. This means he needs some scuba stuff. In particular, he needs the following:

  • Some type of air supply with a regulator.
  • A mask and some type of mouthpiece to breath.
  • A light.
  • A DPV—diver propulsion vehicle.

Please forgive me, but I’m going to go over more detail in this case that you would like. I can’t help it. MacGyver is basically cave diving—this is something that I used to do quite a bit.

Just to show you what that was like, here is an older picture of me. It’s not cave diving, but it’s using all of the same gear (it was practice).

Let’s start with the scuba gear. MacGyver doesn’t have a regular scuba tank, so he uses an oxygen tank used for welding. You don’t normally want to use oxygen for scuba—you want to use air (which is only 21% oxygen). You see, oxygen is actually toxic. If you breath oxygen at high pressure, it can do bad stuff to you. Fortunately, MacGyver is going to use this at very shallow depths—he should be fine. Also, he won’t need to much gas as you consume much more at greater depths (for open circuit systems like scuba).

What is a regulator? Suppose you have a pressurized tank at 1000 psi. You can’t really breath air (or any gas) at that pressure (although there are some tricks—ask me later and I can tell you about this). That’s where the regulator comes in. It takes pressure from the tank and reduces it to the ambient pressure. That’s really important. It has to deliver the pressure at the same pressure around the human. If it was too low, you wouldn’t be able to expand your lungs and breath.

Luckily, they have regulators for welding stuff too. You need a second regulator to let air out only when you breath—but it’s possible to build one of these (they are much simpler).

Now for the DPV. These things are very useful in cave diving. How are you supposed to get 5,000 feet back in a cave if you have to swim the whole way? The early DPV (or scooters as we called them) were essentially trolling motors from a bass fishing boat connected to a battery.

Just about any electric motor with a battery could work. Ideally, the motor should be sealed so it can run underwater—but it doesn’t have to be perfect. It only has to work for a short time.

I really like the scooter in the episode. It really looks like a home built scooter.

OK, you can’t see it too well in that image—just trust me. Or better yet, watch the episode.

I also like how MacGyver side mounts his tank. Even if you have done normal scuba diving, you might be surprised at how these tanks behave underwater. Just because they are heavy out of water doesn’t mean they will pull you down underwater. Very often we would bring extra tanks (stage bottles) in a cave and carry them on our side just like MacGyver did.

Parkour Wall Jump.

MacGyver gets to run up a wall twice in this episode. Just like the wall run with the pole, this case also uses friction. It’s your classic parkour wall run-jump.

If you run towards a wall and push yourself back, there is a force between you and the wall. The faster you run, the greater the force. If this force is great enough, there will be a large enough upward frictional force so that you can get an extra upward jump.

That’s exactly what MacGyver does to get out of the tunnel. Here is a more detailed WIRED post on this wall jump.

Do the MacGyver Hacks Actually Work?

Really, I’m just answer this question from Twitter.

Honestly, this is what I love about working with the MacGyver people. It’s great that they even care enough to bring in a science consultant (that’s me) to look at the MacGyver hacks.

So, I will start off by saying this. Pretty much all of the hacks are at least based on some real scientific idea. None of them are just magic.

In fact, you could go through all the Mac hacks and rate them on a scale from 0 to 10. 10 would be a hack that is one hundred percent legit—totally real. 0 would be magic. Like I said, there are no zero’s that I can recall.

How about some examples from previous episodes with some reality scores?

  • Score = 10: Break into a hotel room door using a coat hanger. Basically use a metal wire to reach under a hotel door and pull down the handle. Sadly, this is completely real.
  • Score = 9: Use a picture and perspective to triangulate the location of an apartment. This is real, but sort of difficult to calculate. But you could do this.
  • Score = 8: DIY dog whistle. It might take some messing around to get it to work just right, but it’s basically legit.
  • Score = 7: Hot air balloon for you phone. Yes. You can totally make a hot air balloon. It’s not even hard. The problem is the lifting capacity. If you want to a balloon to lift a phone, it’s going to have to be fairly big.
  • Score = 5: Pick a lock with a paper clip. The idea is right, but I really doubt you could use a normal paper clip unless it was a super sucky lock.
  • Score = 4: See through walls with wifi. This is based on a real actual thing—however, it would be pretty tough to set it up with stuff you find laying around.
  • Score = 3: All the explosions. When you mix two or more chemicals together, bad stuff can happen. Often the effect size is smaller in reality and often the time to set these things up is quite long. Don’t make explosions.
  • Score = 2: Disabling a car with some electromagnetic thingy. MacGyver builds some devices to stick under cars to prevent them from starting. Yes, starting a car deals with lots of things working together, so you just have to disrupt one of these things. If you have an electromagnetic oscillation (from the device), it could interfere with the computer or maybe even the spark. It’s a stretch, but it could indeed work.

What about a score of 1 or 0? I’m sure they are out there, but I don’t have any that come to my mind. What about the average score? If I had to guess (apparently I do), I would say a score of 6 would fit pretty well.

MacGyver Season 3 Episode 17 Science Notes: Seeds + Permafrost + Feather

The Seed Vault is real

It’s basically a giant insurance policy. Suppose something terrible happens and a bunch of crops are wiped out. What then? How do you start over? Yes, you go to the seed bank and withdraw your seeds.

Feather to detect air currents

MacGyver pulls a feather out of his jacket and uses this to detect air currents. This should work since the feather will move due to super tiny air motion that would be too small for a human to feel.

This reminds me of a job I once had. The job was to go to people’s swimming pools and find leaks. I would take a small squeeze bottle with red dye and let out tiny amounts into the water to see what would happen. If the red dye got sucked into the wall—there’s your leak. Oh, this was done with scuba gear so that I could stay underwater for long periods of time. It was extremely boring.

Finding position from a smartphone accelerometer

Your phone has an accelerometer (probably). At the very least, this accelerometer is used to determine the orientation of the phone so that it knows if you are taking a normal video or a vertical video (don’t do vertical videos).

This accelerometer is essentially a tiny mass on a spring (but not an actual spring). When the phone accelerates, the spring gets compressed by an amount that is proportional to the acceleration. That’s how you get the acceleration. Once you have the acceleration, you can integrate twice to the get the change in position of the phone (assuming the phone started from rest). If you keep doing this every tenth of a second (or whatever time frame you want), you can track the location of the phone. True.

In fact, if you use the augmented reality (AR) on your phone then you have to use the accelerometer. Your phone figures looks at a surface from different viewpoints to figure out how far away it is. The different viewpoints are determined by the motion of the phone and the accelerometer.

Just because it’s cool—here is my short explanation of AR on the phone.

Toxic Pea

Can you actually make a toxin from a pea seed? Yup. That’s possible. In fact, there are a bunch of things out there in the real world that have some pretty deadly stuff in them. Here are some options.

Directional satellite dish

If you have a normal wifi antenna on your computer (and you probably do), it basically just transmits radio waves in all directions. It’s not a completely uniform signal strength in all directions, but let’s just assume it is.

Imagine these radio waves expanding out and forming a sphere. Since the area of the this radio wave sphere is proportional to the square of the radius, the signal power decreases with distance. That’s just how it works.

But wait! What if you redirect these waves into one direction? That would increase the radio power along that direction and give you a better signal. However, you now have to aim this thing.

There are several methods to make a directional antenna. The two common methods are to use a parabolic dish (like a satellite dish) or a wave guide. The wave guide uses a tube with an antenna located at a certain point. Waves go down the tube and then reflect to constructively interfere and make the signal stronger in that direction.

MacGyver Season 1

Since I have finally finished my notes for season 1 of MacGyver, I figured I should include all of my notes in one page.

Here are the episodes.

Hopefully I can finish Season 2 before too long.

MacGyver Season 1 Episode 21 Science Notes: Cigar Cutter

Dirty Bomb

It’s not a Mac-Hack (I assume that’s clear), but let me just explain the difference between a nuclear bomb and a dirty bomb.

A nuclear bomb uses a nuclear reaction to create energy. If you take some large mass element (let’s just say plutonium) and spit it into two pieces, you get some stuff. Obviously you get at least two smaller atoms. But you also get some neutrons and stuff. However, if you added up the mass of all the stuff after the split, it would be slightly less than the mass of the original plutonium. This lost mass is accounted for in energy. Here is the energy-mass relationship.

E = mc^2

The “c” is the speed of light. This says that you get a BUNCH of energy for just a little bit of mass and this is the basis for a nuclear fission reaction. For a nuclear bomb, the split creates neutrons that can also split more atoms which produces MORE neutrons and more splits. Oh, the energy and the left over pieces tend to make stuff radioactive.

The dirty bomb also uses radioactive material. However, the main explosion is not a nuclear reaction but instead a more conventional chemical-based bomb. The bomb includes radioactive material that gets spread around from the explosion. It’s dirty. Yes, it’s bad—but it’s not a nuclear explosion. Also, these are pretty easy to make since you just need a normal bomb and some radioactive material.

Parsecs and Time and Distance

Everyone (except Jack) is correct. The parsec is a unit of distance. It has to do with parallax. Here is a simple experiment. Hold your thumb out in front of your face. Now close one eye and look at your thumb. Hopefully there is something in the background that you can line it up with. Now close that eye and open the other one. Notice that your thumb now lines up with something else in the background? That’s parallax.

Wait. You didn’t actually do the eye thumb thing. Really, you should do that.

OK, back to the parsec. The motion of your thumb with respect to the background depend on the distance from your thumb to your face as well as the distance between your two eyes. What if you increase the distance between your eyes? What if this distance is the size of the Earth’s orbit around the Sun? In that case the change in observation locations (on different sides of the Sun) can be used to measure the distance to nearby stars. If a star has an apparent angular shift of 1 second of a degree, that’s a parsec.

The “sec” in parsec is for “seconds of a degree”—not time seconds. Yes, they made a mistake in Star Wars. Here is even more details about measuring distances in astronomy.

Blood Stopping Foam

I don’t know what to call this stuff. MacGyver injects some liquid into Bozer’s knife wound and it sort of seals it up so it won’t bleed. It’s not so much of a hack, but it does appear to be real.

It would be sort of like that expanding foam you use to seal cracks around your house—except for blood.

Fertilizer grenades

What do fertilizer and explosives have in common? Nitrogen. It’s really interesting if you think about it. The air we breath has a BUNCH of nitrogen in it—79 percent. However, it’s not so simple to get. Once humans figured out how to get the nitrogen, they used it for fertilizer and explosives.

But yeah, you can make explosives from fertilizer—but don’t.

Liquid Oxygen

Yeah, this is bad stuff. Of course it’s cold, but more important is that it’s oxygen. If you want to burn stuff, you need oxygen. Liquid oxygen is WAY denser than gas oxygen. So, if you put this stuff on something you can get a lot of fire.

Check it out.

MacGyver Season 1 Episode 20 Science Notes: Hole Puncher

Fake Blood

How do you make it look like you killed someone? Fake blood would help. MacGyver mixes up a batch using cocoa mix and some fruit punch.

Here is another recipe.

Fog Machine

MacGyver needs some smoke or something like that so he can elude the bad guys. In this case, he is going to use the water in the pool to make a giant humidifier.

OK, this isn’t smoke. It’s water vapor—water in a gas state. You can see through water vapor, because it’s in the air right now (hopefully). However, when the water vapor condenses out of the air, it makes tiny drops of water. These tiny drops of water reflect light to give a similar appearance to smoke.

But how do you make water vapor from a pool? One way is to use a spinning rod. If you put a rod that spins very fast in the water, some of the water will interact with the spinning rod. If the rod is spinning fast enough, then this water will get “flung” into the air.

MacGyver Season 1 Episode 19 Science Notes: 19 Compass

What does “normal” mean?

Honestly, this a great physics joke. MacGyver and Jack are in a trash compactor—yes, there are some Star Wars jokes here too. In order to break the hydraulic pump, Mac wants to put a pole so that it pokes through a particular screw. Here’s the important part.

MacGyver: …if I hold the pipe perfectly normal.

Jack: Dude. Nothing about this is normal.

Jack messes up and hurts his arm. According to MacGyver: “I used a technical term that Jack didn’t understand.”

Ok, so what does “normal” mean? In short, it means perpendicular. That’s it. MacGyver needed the pipe to be perpendicular to the wall. That’s what normal means. That’s also why physicists call the force a surface pushes on an object “the normal force” —because it’s perpendicular to the surface.

Yes, we also use “normal” in geometry—but of course Jack wouldn’t get that.

What is a spectrometer?

Not a MacGyver hack, but I want to talk about spectrometers anyway.

My first idea of a spectrometer is a visible-light spectrometer. This is essentially a prism. Light goes into the prism and is then separated into different colors. By looking at the colors in the light you can identify the light source. Oh, but this kind of spectrometer wouldn’t be found in a chemistry lab—at least probably not.

There is also a mass spectrometer. This takes a gas of molecules and shoots them into an area. Using magnetic fields, the path of the molecules is bent. Based on the amount of particle deflection, you can get a value for the mass of the particles.

Also, it’s just fun to say “mass spectrometer”.

Origin of Hacking

Come on. We know that MIT didn’t really invent hacking. Humans have always been able to creatively figure out problems—which is the essence of hacking.

However, MIT might indeed have invented the word “hacking”. The history of this stuff is really interesting. Let me recommend the following book—Hackers: Heroes of the Computer Revolution (Steven Levy). I liked it.

Door Alarm

Another non-MacGyver hack. This is a hack from his friend. She creates a door alarm. You can’t really see it very well, but it would be a small battery with a buzzer. The circuit runs to a clothes pin with aluminum foil on the pinchers and a piece of paper between them. Since the paper is an insulator, there is not a closed circuit. The paper is then attached to the door (with tape) so that opening the door pulls the paper out.

It’s actually a pretty simple design. You can (and should) build one of these yourself. Here is a video showing how to do that.

Electric Whip

In order to make an improvised weapon, Mac takes an extension cord and cuts off one end. Then he strips the wires on that end and plugs it in to the wall outlet. Note: DON’T DO THIS.

When the two bare ends of the wires touch someone, they will get shocked. Oh, and it’s a whip.

So, would this work? I think it would mostly work. It wouldn’t make the lightning stuff, but that just makes it look cool. It does look cool, right?

DIY Centrifuge

This might be the best hack in MacGyver history. Basically, this is a real life MacGyver-hack. It’s a low cost and simple to build centrifuge.

What the heck is a centrifuge? It’s a super high speed spinning thingy. You can put liquids in there and the high rotation rate causes a centrifugal force (yes, I used that term correctly) to separate liquids of different densities. This can be used to process blood.

Here is a real centrifuge.

And here is the DIY version. It’s basically just string and cardboard. However, with this simple version people can process blood stuff in more rural areas. Awesome.

It’s real.

MacGyver Season 1 Episode 18 Science Notes: Flashlight

Hold on. There’s a metric butt ton of science in this episode. It’s going to be great.

Turning bullet

SPOILER ALERT. This episode has a bullet that can turn. It’s sort of the key plot element in this episode. These dudes are trying to steal the technology for these “smart bullets”. These bullets are essentially tiny guided missiles with fins so that they can turn in flight.

I’ll just leave this Wikipedia link on smart bullets and then move on (it’s not really a MacGyver hack anyway).

The physics of birthdays

Again, not a hack—but MacGyver thinks birthdays are dumb. Well, not dumb but arbitrary. I think he is right. In fact, I use the following phrase on people’s birthday’s:

Happy Solar Orbit Day.

Yes, that is the day the person completes another orbit around the Sun. I like thinking of it that way.

Fixing a generator inverter

There are lots of different types of generators. Most of them involve a gasoline engine that turns stuff. Some times this turning stuff involves a magnet to make an electric current. But what happens when the magnet get’s messed up? Yes, you have to fix it.

A permanent magnet is a ferromagnetic object (like iron) in which all the magnetic domains are aligned. If the domains are not aligned then it would just act like a dumb piece of metal. You can get the domains align by applying a strong magnetic field.

This is exactly what MacGyver does to the generator. He uses a defibrillator to generate the current and forms a loop of wire to create the strong external magnetic field. Seems like it could work.

DIY sand blaster

How do you get people out of a collapsed building? What if you could just cut through the wall? Yes, that’s the MacGyver plan.

In this case, he uses high pressure water mixed with sand—a type of sand blaster. If you have water at a high enough pressure, it can pretty much cut through anything. Of course MacGyver’s water by itself isn’t fast enough. That’s where the sand comes in. When the sand hits the concrete, the abrasive interaction is enough to eat away at the concrete.

Oh, this would take quite a while to work.

Seeing through walls with radar

Yes, this is a real thing. NASA made this device. Here is a description. Basically, this thing sends out microwaves and detects the reflected microwaves. But the magic is that it only looks for variations in reflections caused by small oscillations—these oscillations are from a human heart.

For MacGyver’s version, he starts with a radar gun (from a police car). These don’t use the same frequency as the microwave detector, but he can make a modification. With some software from Riley, that’s pretty much what he needs to get started. It’s at least plausible.

Screw jack

How do you lift super heavy stuff? You need a simple machine. All of the simple machines deal with force and distance. If you can increase the distance over which you apply a force, you can get a greater output force over a shorter distance.

In this case, MacGyver makes a screw jack. You can lift a large mass by turning the screw to get it to extend. In fact, you could do something like this yourself. Here’s how.

Ascender rig

The goal of an ascender rig is to allow some device to move UP a rope, but not down. This means you can climb up a rope one little bit at a time. Here is an example.

Oh, MacGyver made an ascender rig to climb an elevator cable and escape a collapsed building.

Modify laser

The smart bullet is aimed using a laser. Of course the bullet is only a little bit smart. It only aims towards the brightest laser. If you could make another laser that gets the attention of the bullet, you can get the bullet off course.

MacGyver takes the laser sight off a pistol. In order to increase the power output, he burns off a potentiometer. This could work on some lasers—like this.

Oh, DON’T DO THIS. You don’t want a powerful laser without knowing what it can do. These lasers can seriously damage your eyes in ways you wouldn’t be able to predict. Remember, you only have two eyes. Don’t mess them up.

So, they use this powerful laser to redirect a smart bullet. That part is plausible. It’s unlikely they could get a bullet to turn all the way around. They wouldn’t have time to move the laser dot and the bullet fins couldn’t make it turn that much.

Who cares. It was still a great episode.

MacGyver Season 3 Episode 16 Science Notes: LIDAR + Rouges + Duty

What is LIDAR?

Again, this is not a MacGyver-hack. Well, I guess it sort of is a Mac-hack since he designed the LIDAR. So, what is LIDAR? At the most basic level, LIDAR uses a laser to determine the distance to an object. By scanning this laser over some area, you can get a very detailed distance map. If you know the location of the LIDAR (in the aircraft), you get a very nice map of the terrain below.

But how do you get distance with a laser? The laser produces a beam of light (that’s what the “L” stands for in “laser”) and this light travels at a speed of about 3 \times 10^8\text{ m/s}. Yes, that is super fast. However, it’s not infinitely fast. So when this laser light travels and reflects off of something, it takes time to get back to the LIDAR. The longer it takes to return, the greater the distance. That’s the basic idea of LIDAR.

How do you start a jet engine?

I’m not an aeronautical engineer (in case you didn’t already figure that out). So here is my very simple explanation of a jet engine. The key to getting thrust is the same as a propeller driven aircraft: make the air coming in go faster as it leaves. This increase of air speed (into and out of the engine) means a change in momentum and thus a forward pushing force. For the jet engine, it increases the final speed of the outgoing air by also heating it by burning fuel.

So, how do you start a jet engine? It’s not the same as starting your car (but not completely different either). The main thing is that you need to get the jet turbines spinning first so that there is air moving through the engine. Then you can add the burning fuel to get the thing started. Here is a great video on how this works. Oh, this is why youtube is so nice—you can find a video on pretty much anything.

Pick lock with a paperclip

Oh, you missed this hack—didn’t you. When MacGyver gets into the old building, he has a paperclip in has hand. So, can you pick a lock with a paperclip? Maybe. You could use the paperclip to jiggle the lock pins, but you would need something to apply torque to the lock cylinder.

Here is a tutorial on lock picking—but don’t be a bad guy.

Break open door with a raft

MacGyver pushes open a locked door by filling a raft with water. Let’s start with the definition of pressure. Pressure is a force divided by an area.

Let’s start with the definition of pressure. Pressure is a force divided by an area.


You can solve this for the force.


So, if you have a pressure (in the raft) it will produce a force equal to the product of the pressure and the contact area. The bigger the area, the greater the force. In fact, with just a small pressure you can get a pretty big force.

OK, this is from a previous episode but I still like it. Here is a demonstration in which I use the pressure from my lungs to lift myself. Yes, small pressure with a large area means a significant e force.

What about the water? Well, the water will give the raft more mass so that it doesn’t just push itself away from the door. If you want to open the door with air pressure, you would need to have something hold the raft agains the door.

Dart gun

I love this visual effect where MacGyver is looking around for stuff to build and it shows all the things he sees. In the end, he builds a dart gun that shoots morphine needles.

Really, I just want to talk about two parts of this build—the shooting and the injecting. MacGyver uses a propane tank to shoot the dart. This is the same as your basic potato gun. Compressed gas from the tank push the dart in the tube. The longer the distance of the tube, the greater the final speed of the dart.

For the injection, you can’t just shoot a needle into someone. You need to push that plunger on the back of the needle to get the drug into a body. That’s where the steel spacers come into play. When the front of the dart hits a person, it will stop. However, the mass on the back will want to keep going until a force slows it down. This force comes from the plunger—that means the plunger gets depressed and the bad guys get drugged.

Beam splitter

How do you make one laser look like many lasers? You need a beam splitter. This is exactly what MacGyver does to fool the baddies into thinking there are bunch of other good guys in the woods.

Basically, a beam splitter is a piece of glass. We like to think of glass as being transparent so that light goes right through it—and it does. That’s why we use glass for windows to see stuff outside. But light also reflects off glass. In fact, if the light (from the laser) hits the glass at an angle then you will get both transmission AND reflection.

It doesn’t even need to be glass. Here is a quick demonstration of a beam splitter with just a piece of clear plastic.