MacGyver Season 3 Episode 4

Pressure Lift Bag

This one is pretty awesome.  MacGyver needs to lift up a truck to get it un-stuck.  So, he takes a rubber bladder (not sure where he got it – it could be part of a shock) and connects it to the exhaust (or maybe he connects it to the liquid oxygen).  Anyway, he fills the bladder with an expanding gas.  The bladder fills up and lifts the truck.  This would totally work.

Check out this version you can do yourself.

How does this even work?  Ok, so you have a trash bag.  When you blow air into it, you can approximately get a pressure of 2 atmospheres (just a guess).  The force from this pressure depends on the surface area using this formula:

F = PA

If you want to lift a human (mass of 75 kg) with a gauge pressure of 10^5 \text{ N/m}^2, how big of an area would you need?  Solving the above equation for A:

A =\frac{mg}{P} = \frac{(75\text{ kg})(9.8 \text{ N/kg})}{10^5 \text{ N/m}^2} = 0.00735 \text{ m}^2

That might seem like a tiny area – but that would be a square about 9 cm on a side.  So, this is clearly possible (as you can see in the video that I actually did it).

Liquid Oxygen

We normally think of oxygen as a gas – and at room temperature it is indeed a gas.  Actually, it’s a molecular gas of O2 – two oxygens bound together.  I guess we should first talk about air and oxygen.  Yes, we need air to breath – but air is more than just oxygen.  It’s approximately 21 percent O2 and 79 percent nitrogen gas.

If you decrease the temperature of oxygen gas – it will turn into a liquid.  Yes, it has to be super cold at negative 183 C.  How cold is this?  Here is a video that shows how cold this is (and liquid nitrogen) along with some of the cool things you can do with super cold stuff.

High Pressure Air

Humans can survive under very high pressures.  However, there is a problem with breathing high pressure air.

The nitrogen in high pressure air can be absorbed into your tissues and stuff.  When the human then goes back to a lower pressure, this nitrogen comes out of the tissues.  If the change in pressure happens too fast, this nitrogen can bubble and cause all sorts of problems.  This is basically what we call decompression sickness.

The other problem is oxygen.  At 21 percent oxygen at normal atmospheric pressure, everything is fine for humans (since we live in this stuff).  However, as the pressure increases, the partial pressure of oxygen also increases.  At normal cases, the partial pressure of oxygen is 0.21 atm (atmospheres).  If you have 50 percent O2 at atmospheric pressure, this would be 0.5 atm.  The partial pressure is the current pressure multiplied by the fraction of gas.

Here’s the deal.  If the partial pressure of oxygen gets over 1.6 atm, bad stuff happens.  Stuff like convulsions.  Oxygen is bad stuff.  How do you get a partial pressure of 1.6 atm?  If you increase the pressure, the partial pressure of 21 percent O2 is 1.6 atm.

OK, now back to the show.  MacGyver can survive in high pressure one of two ways.  Method number 1: don’t breath air.  If he breathes a gas mixture that has a lower concentration of oxygen, This is what deep divers do when they breath mixed gasses like trimix.  Method number 2: use a constant atmosphere suit so that he stays at 1 atm pressure.  That’s what he does in this case.

What happens if MacGyver pulls out his air hose? Yup.  That would work.  Even at super high pressures.  Oh sure, his lungs would get super small because of the external pressure – but that’s just fine.  This is exactly what happens when a free diver goes deep (breath holding).

Oh, he would have to equalize his ears just like a free diver.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s