MacGyver Season 2 Episode 3 Science Notes: Roulette Wheel + Wire

Is there a better MacGyver image than his radio build at the beginning of the episode? I think not. Here is an image.

Could you actually build a radio from a snow mobile? I think yes. Really, radios aren’t actually that complicated. The only difficult part would be building an amplifier so that the signal generated from a voice is powerful enough to be detected by someone’s radio. If the snow mobile had any kind of radio (like for listening), you would have all the parts you would need.

Stun gun on slot machine

They call these hand held zap things stun guns, but they don’t shoot. You just have to hold them up to someone to shock them.

MacGyver needs a distraction so he takes the stun gun and uses it on a slot machine. After that, the guy playing wins.

Is this even possible? Possible, yes. Likely, no. The stun gun has high voltage that creates sparks. These sparks can damage electronic equipment—especially the super tiny transistors in a computer chip. So, it’s possible that the stun gun does something to cause a win.

However, these slot machines are built with tampering in mind. They need to be able to resist humans messing around with them to win. So, I doubt this would work. Also, if MacGyver zaps that outside of the machine it’s probably grounded. This means that the electric current that gets into the case of the slot machine will just go around all the electrical components.

You probably have a better chance of winning on the slot machine than cheating on it.

Iris scanner hack

In order to get through an iris scanner on a door, Jack gets a close up picture of the target’s eye. Then Bozer prints out a fake lens to wear over the eye. Could this work? It’s possible.

In fact, check this out. Someone did the same thing with the Samsung Galaxy S8.

Handheld Cellphone Stingray

A cellphone stingray is a device that acts like a cell tower. Cell phones connect to it thinking that it’s just a tower—but blam, it’s actually another computer.

Of course the details are complicated (which means I don’t really understand them), but you would need some type of antenna. Jack has a tiny antenna in his cuff that has to get close enough to the target’s phone. I think this is plausible. At least it would give Riley a chance to get into the phone and steal some codes.

Magnetic Detector

Also known as a compass. MacGyver is trying to find a magnetic switch for a hidden door. He grabs a bit of metal (hopefully it’s ferromagnetic steel) along with a magnetic bottle opener.

The basic idea is that a metal like steel (most steel) has magnetic domains. When these domains are lined up, the material will act like a magnet. You can line up the domains by rubbing the steel with a magnet. Like this.

If the magnetized steel can float, it will rotate and point in the direction of an external magnetic field—either from the Earth or from that magnetic door switch.

OK, one small issue. In the episode it shows MacGyver rubbing the steel back and forth. You really just want to rub it one way. I think it would still work though. Oh, also many of those magnets like the one on the bottle opener have weird domains. They aren’t just like a plain north and south of a bar magnet, but it still might work.

Vacuum Cleaner Spider-Man

This is awesome (and mostly real).

Here’s how it works. The vacuum cleaner works by pulling air out of a region. If you put a vacuum cleaner over carpet, the air flow goes from the carpet to the vacuum cleaner (basically with just a super powerful fan). When the air moves in this manner, it often picks up other stuff—like dirt.

MacGyver has this vacuum hooked up to some metal tray covers. When the air is pulled from these covers, the air pressure inside the covers decreases. That means that the external pressure (due to the Earth’s atmosphere) will push the covers onto the glass wall.

Actually, this force from the atmospheric pressure can be quite large. The pressure is 10^5\text{ N/m}^2. So if the pressure inside the covers is just half an atmosphere with a radius of 10 cm, then the net force (for the two covers) would be:

F = PA=(0.5\text{ N/m}^2)(2)(\pi (.1\text{ m})^2) = 3141 \text{ N}

That’s some serious force. But wait! This is not the force that supports MacGyver. In fact, it is the frictional force between the cover and glass that keeps him from falling. The frictional force is an interaction between two surfaces that acts parallel to the surface. It depends on two things:

  • The types of materials interacting.
  • The magnitude of the force that pushes these two surfaces together.

If you push two surfaces together really hard, there will be a greater frictional force. So, this force from the vacuum cleaner exerts a force that increases the frictional force and this frictional force allows MacGyver to climb like Spider-Man.

Here is something similar with a guy that hangs from an overhang with a vacuum cleaner. Pretty cool.

Shrinking metal

This is real (based on something real). Yes, you can actually make metal things smaller. Here is a great video from Physics Girl (Dianna Cowern) that shows how this works.

The basic idea is to create a HUGE electric current very quickly. This large change in current can create a very high change in magnetic fields. When you put metal in this high changing magnetic field, it induces an electric current in the object. This induced current creates a magnetic field that interacts with the external magnetic field in such a way that the device gets squished. It’s awesome. Oh, when I say “a large change in magnetic field”, I am actually talking about the time derivative of the magnetic flux.

So, what do you need to make this coin shrink thing work? You just need super high current super fast. The best way to do this is to charge up some big capacitors and then discharge them through some wires. That’s essentially what MacGyver does.

The biggest problem is his capacitor. He builds one using two roulette wheels. Like this.

Yes. Any two metal devices can create a capacitor—but you want one with a large surface area and very close together. If you turned the two tables around so the flat side was close to the other one, it would be better—but it’s still a capacitor (but not really big enough for this job). Still, the idea is solid.

MacGyver Season 3 Episode 16 Science Notes: LIDAR + Rouges + Duty

What is LIDAR?

Again, this is not a MacGyver-hack. Well, I guess it sort of is a Mac-hack since he designed the LIDAR. So, what is LIDAR? At the most basic level, LIDAR uses a laser to determine the distance to an object. By scanning this laser over some area, you can get a very detailed distance map. If you know the location of the LIDAR (in the aircraft), you get a very nice map of the terrain below.

But how do you get distance with a laser? The laser produces a beam of light (that’s what the “L” stands for in “laser”) and this light travels at a speed of about 3 \times 10^8\text{ m/s}. Yes, that is super fast. However, it’s not infinitely fast. So when this laser light travels and reflects off of something, it takes time to get back to the LIDAR. The longer it takes to return, the greater the distance. That’s the basic idea of LIDAR.

How do you start a jet engine?

I’m not an aeronautical engineer (in case you didn’t already figure that out). So here is my very simple explanation of a jet engine. The key to getting thrust is the same as a propeller driven aircraft: make the air coming in go faster as it leaves. This increase of air speed (into and out of the engine) means a change in momentum and thus a forward pushing force. For the jet engine, it increases the final speed of the outgoing air by also heating it by burning fuel.

So, how do you start a jet engine? It’s not the same as starting your car (but not completely different either). The main thing is that you need to get the jet turbines spinning first so that there is air moving through the engine. Then you can add the burning fuel to get the thing started. Here is a great video on how this works. Oh, this is why youtube is so nice—you can find a video on pretty much anything.

Pick lock with a paperclip

Oh, you missed this hack—didn’t you. When MacGyver gets into the old building, he has a paperclip in has hand. So, can you pick a lock with a paperclip? Maybe. You could use the paperclip to jiggle the lock pins, but you would need something to apply torque to the lock cylinder.

Here is a tutorial on lock picking—but don’t be a bad guy.

Break open door with a raft

MacGyver pushes open a locked door by filling a raft with water. Let’s start with the definition of pressure. Pressure is a force divided by an area.

Let’s start with the definition of pressure. Pressure is a force divided by an area.

P=\frac{F}{A}

You can solve this for the force.

F=PA

So, if you have a pressure (in the raft) it will produce a force equal to the product of the pressure and the contact area. The bigger the area, the greater the force. In fact, with just a small pressure you can get a pretty big force.

OK, this is from a previous episode but I still like it. Here is a demonstration in which I use the pressure from my lungs to lift myself. Yes, small pressure with a large area means a significant e force.

What about the water? Well, the water will give the raft more mass so that it doesn’t just push itself away from the door. If you want to open the door with air pressure, you would need to have something hold the raft agains the door.

Dart gun

I love this visual effect where MacGyver is looking around for stuff to build and it shows all the things he sees. In the end, he builds a dart gun that shoots morphine needles.

Really, I just want to talk about two parts of this build—the shooting and the injecting. MacGyver uses a propane tank to shoot the dart. This is the same as your basic potato gun. Compressed gas from the tank push the dart in the tube. The longer the distance of the tube, the greater the final speed of the dart.

For the injection, you can’t just shoot a needle into someone. You need to push that plunger on the back of the needle to get the drug into a body. That’s where the steel spacers come into play. When the front of the dart hits a person, it will stop. However, the mass on the back will want to keep going until a force slows it down. This force comes from the plunger—that means the plunger gets depressed and the bad guys get drugged.

Beam splitter

How do you make one laser look like many lasers? You need a beam splitter. This is exactly what MacGyver does to fool the baddies into thinking there are bunch of other good guys in the woods.

Basically, a beam splitter is a piece of glass. We like to think of glass as being transparent so that light goes right through it—and it does. That’s why we use glass for windows to see stuff outside. But light also reflects off glass. In fact, if the light (from the laser) hits the glass at an angle then you will get both transmission AND reflection.

It doesn’t even need to be glass. Here is a quick demonstration of a beam splitter with just a piece of clear plastic.

MacGyver Season 1 Episode 8 Science Notes: Corkscrew

Remember, I’m just going over the MacGyver hacks with science stuff in them.

DIY Blacklight

This one is fairly legit. MacGyver is in an escape room and needs to find a blacklight to read some hidden words on the wall. He says it would be easier to build a blacklight than it would be to find it.

Here is MacGyver’s build. Use a smart phone LED light and an old floppy disk. In theory, this could work. Here is the short answer: most white LED lights work by having an ultraviolet light with a fluorescence coating to produce white light (which is the way the old school tube-like fluorescent lights work). This means that the white LED also produces UV light (also called blacklight). You just need to block out the visible light—and that’s where the floppy disk comes in. If you take the actual disk out of the floppy, some of them block visible light.

I actually wrote a WIRED post on this—here it is.

https://www.wired.com/2016/12/make-uv-light-phones-led-flash/

Fluorescence of stuff on the wall 

The second part of this hack is to use the DIY UV light to read the stuff on the wall. Here’s how that works.

Electrified stair rail

A bad guy is getting away and running down a stairwell. MacGyver pulls some wires out of a wall light and touches one of the wires to the rail and the guy gets shocked and falls.

Would this work? Maybe. In order for the guy to get shocked, there has to be a complete electrical circuit that passes through the dude. That means the current would come out of the wall, go to the rail, go to the guy, go OUT of the guy, and then back to the wall.

In order to get through the guy, he would have to be grounded and the rail would have to NOT be grounded. I suspect that building code requires a rail to be grounded for safety—but you never know. In order to get the guy grounded, he would have to stand on conducting ground (like metal) and have terrible shoes.

But still, it’s at least possible.

Hacking magnetic lock

MacGyver is trapped in another room—with essentially nothing in it. He grabs some wire out of the ceiling panels can fishes out the wires for the security pad. Then he manually enters the keypad code by connecting wires.

OK, this could work. However, it if it’s a legit security pad it would probably be harder to hack.

Wine bottle rocket

MacGyver takes some wine bottles, dumps out some of the wine and recorks them. Then he pumps them up and let’s the cork pop out. Now it’s a water bottle rocket.

Here is the launch in slow motion.

Of course like many MacGyver hacks, this is real. The only problem is that it would take a normal person a few minutes to set up and not a few seconds.

Radio jammer

MacGyver needs to take out some remote controlled guns. He grabs a CB radio from a truck and hooks it up to a large power supply. This broadcasts enough static to jam the radio signal to the guns.

Let’s go over the details.

  • Could he get a CB out of a truck? Yes. Easy (but it wouldn’t be as quick as he does it).
  • Could he hook it up to a power supply? I think he used the power lines to some metal crusher. This probably wouldn’t work. The CB runs on DC current and the big power is probably AC. Also, it probably expects 12 volts.
  • Would this jam the signal? Here’s where he might get lucky. If the guns run on the same channel as the CB —it would work. If the power supply messes up the radio so that it just somehow broadcasts on a bunch of frequencies—it would work.

So, it’s possible.

MacGyver Season 3 Episode 6 Hacks

Getting through a giant chunk of cement with acid.

Really, this isn’t a “Mac Hack” since MacGyver didn’t do it.  Instead it was someone else.  She used muriatic acid to help get through a tunnel that was plugged up with cement (or concrete—I always get those two confused).

But yes, muriatic acid will indeed “eat” through cement.  If the goal is to create a hole that will allow a human to get through, it’s not so bad.  You can use the acid to weaken enough of the structure that you can take it out in pieces.  You don’t have to dissolve all the cement.

Now for a bonus homework question—actually an estimation problem.  Suppose there is 10 feet of cement to get through.  If someone uses muriatic acid, how long would this hole take to make?  Go.

Thermite

Thermite is awesome—oh, and slightly dangerous.  Basically, it’s a chemical reaction between two metals in which one of the metals has the oxygen needed for the reaction (like iron oxide).  The key to getting this reaction to work is to have super tiny pieces of metal (like super super tiny).  Really, that’s the tough part.  But once you get that, the thermite gets really hot, really fast.  Hot enough to melt stuff.

Could it be used to close up gun ports in an armored vehicle?  Probably.

Pressure to open an armored vehicle

An armored car has armor.  That’s why they call it an armored car.  The primary role for the armor is to keep out things like bullets and people so that the stuff inside (probably money) is safe.

But what if you seal off the openings and then pump in some air?  The cool thing about air pressure is that even a small pressure increase can exert HUGE forces on a wall.  Let’s say that MacGyver doubles the atmospheric pressure inside the truck so that it goes from 10^5 \medspace \text{N/m}^2 to 2\times 10^5 \medspace \text{N/m}^2.  If you have a wall that has dimensions of 2 meters by 2 meters, there would be a net outward force of 4 \times 10^5 \medspace \text{N} pushing it outward.  For you imperials, that is like 90,000 pounds.

Oh, this is why submarines are cylindrical shaped.  Flat walls bend under great pressure.

DIY balance

I really don’t know how much detail to go over for this hack.  MacGyver builds a simple balance scale to find the weight of some money.  As long as the arms are equal, this should be easy.  Maybe in a future post (on Wired) I will show you a design for a symmetrical balance scale.

Pry Bar Lever

Again, there’s not too much to say here.  MacGyver uses a piece of metal to pry open a door.  This is why humans use crow bars.  In short, this is a torque problem.  The torque is the product of force and lever arm.  So a small force with a large lever arm (MacGyver pushing on the end of the bar) gives a small lever arm and huge force (from the tip in the door).

Ok, I lied.  Torque is way more complicated than that.  Really, it’s a vector product:

\vec{\tau} = \vec{F} \times \vec{r}

That’s a little better.

Oh, there were two good hacks that didn’t make it into the show.  Too bad.

 

 

MacGyver Season 3 Episode 4

Pressure Lift Bag

This one is pretty awesome.  MacGyver needs to lift up a truck to get it un-stuck.  So, he takes a rubber bladder (not sure where he got it – it could be part of a shock) and connects it to the exhaust (or maybe he connects it to the liquid oxygen).  Anyway, he fills the bladder with an expanding gas.  The bladder fills up and lifts the truck.  This would totally work.

Check out this version you can do yourself.

How does this even work?  Ok, so you have a trash bag.  When you blow air into it, you can approximately get a pressure of 2 atmospheres (just a guess).  The force from this pressure depends on the surface area using this formula:

F = PA

If you want to lift a human (mass of 75 kg) with a gauge pressure of 10^5 \text{ N/m}^2, how big of an area would you need?  Solving the above equation for A:

A =\frac{mg}{P} = \frac{(75\text{ kg})(9.8 \text{ N/kg})}{10^5 \text{ N/m}^2} = 0.00735 \text{ m}^2

That might seem like a tiny area – but that would be a square about 9 cm on a side.  So, this is clearly possible (as you can see in the video that I actually did it).

Liquid Oxygen

We normally think of oxygen as a gas – and at room temperature it is indeed a gas.  Actually, it’s a molecular gas of O2 – two oxygens bound together.  I guess we should first talk about air and oxygen.  Yes, we need air to breath – but air is more than just oxygen.  It’s approximately 21 percent O2 and 79 percent nitrogen gas.

If you decrease the temperature of oxygen gas – it will turn into a liquid.  Yes, it has to be super cold at negative 183 C.  How cold is this?  Here is a video that shows how cold this is (and liquid nitrogen) along with some of the cool things you can do with super cold stuff.

High Pressure Air

Humans can survive under very high pressures.  However, there is a problem with breathing high pressure air.

The nitrogen in high pressure air can be absorbed into your tissues and stuff.  When the human then goes back to a lower pressure, this nitrogen comes out of the tissues.  If the change in pressure happens too fast, this nitrogen can bubble and cause all sorts of problems.  This is basically what we call decompression sickness.

The other problem is oxygen.  At 21 percent oxygen at normal atmospheric pressure, everything is fine for humans (since we live in this stuff).  However, as the pressure increases, the partial pressure of oxygen also increases.  At normal cases, the partial pressure of oxygen is 0.21 atm (atmospheres).  If you have 50 percent O2 at atmospheric pressure, this would be 0.5 atm.  The partial pressure is the current pressure multiplied by the fraction of gas.

Here’s the deal.  If the partial pressure of oxygen gets over 1.6 atm, bad stuff happens.  Stuff like convulsions.  Oxygen is bad stuff.  How do you get a partial pressure of 1.6 atm?  If you increase the pressure, the partial pressure of 21 percent O2 is 1.6 atm.

OK, now back to the show.  MacGyver can survive in high pressure one of two ways.  Method number 1: don’t breath air.  If he breathes a gas mixture that has a lower concentration of oxygen, This is what deep divers do when they breath mixed gasses like trimix.  Method number 2: use a constant atmosphere suit so that he stays at 1 atm pressure.  That’s what he does in this case.

What happens if MacGyver pulls out his air hose? Yup.  That would work.  Even at super high pressures.  Oh sure, his lungs would get super small because of the external pressure – but that’s just fine.  This is exactly what happens when a free diver goes deep (breath holding).

Oh, he would have to equalize his ears just like a free diver.

Word Police: Use of the word pressure

I know I should just let go, but this is what makes me, me. I understand that there are terms in physics (like for instance ‘pressure’) that are used in all sorts of ways in common language. The problem is when someone tries to explain something scientifically and misuses a word. Pressure means something. It is the average force per area due to collisions of a gas or liquid on a surface. Really, you can see a good animation of this, I have a link and explanation when [I talked about MythBuster’s Lead Balloon](http://blog.dotphys.net/2008/09/mythbusters-how-small-could-a-lead-balloon-be/).

So, what is my problem? I was reading this interesting article on [Scientific American.com about solar refrigerators](http://www.sciam.com/article.cfm?id=solar-refrigeration). Here is a small quote:

*The key is the energy exchanged when liquids turn to vapor and vice versa—the process that cools you when you sweat. By far the most common approach, the one used by the refrigerator in your house, uses an electric motor to compress a refrigerant—say, Freon—turning it into liquid. When the pressure created by the compressor is released, the liquid evaporates, absorbing heat and lowering the temperature.*

“Pressure created by the compressor” isn’t too bad (although it might be interpreted by some that pressure is some substance). My biggest problem is the “When the pressure created by the compressor is released” part. How do you release pressure? Yes, you could allow the particles in the gas to stop colliding with the wall and thus “release” them. But aren’t you releasing the particles not the pressure?

I don’t mean to pick on this particular case because it’s not that bad. There are many other cases where the word pressure is used in a really incorrect manner.

On a side note, about the above article, I find cooling to an extremely interesting problem. It is funny how easy it is to heat something up, but so difficult to cool it off.

**PS:** I also don’t like how the article says “absorb heat”. This also implies that heat is a substance. I don’t really like the word “heat”.

MythBusters: How small could a lead balloon be?

On a previous episode of The MythBusters, Adam and Jamie made a lead balloon float. I was impressed. Anyway, I decided to give a more detailed explanation on how this happens. Using the thickness of foil they had, what is the smallest balloon that would float? If the one they created were filled all the way, how much could it lift?

First, how does stuff float at all? There are many levels that this question could be answered. I could start with the nature of pressure, but maybe I will save that for another day. So, let me start with pressure. The reason a balloon floats is because the air pressure (from the air outside the balloon) is greater on the bottom of the balloon than on the top. This pressure differential creates a force pushing up that can cause the balloon to float.

**Why is the pressure greater on the bottom?**
Think of air as a whole bunch of small particles (which it basically is). These particles have two interactions. They are interacting with other gas particles and they are being pulled down by the Earth’s gravity. All the particles would like to fall down to the surface of the Earth, but the more particles that are near the surface, the more collisions they will have that will push them back up. Instead of me explaining this anymore, the best thing for you to do is look at a great simulator (that I did not make)
[http://phet.colorado.edu/new/simulations/sims.php?sim=Balloons_and_Buoyancy](http://phet.colorado.edu/new/simulations/sims.php?sim=Balloons_and_Buoyancy)

![Page 0 Blog Entry 14 1](http://blog.dotphys.net/wp-content/uploads/2008/09/page-0-blog-entry-14-1.jpg)

Continue reading “MythBusters: How small could a lead balloon be?”

The Sky is Falling (as always)

One of my daughters was just reading Chicken Little to me. I don’t know if you are familiar with Chicken Little, but she is a chicken that runs around telling people “The sky is falling”. In my normal fashion, I started thinking about the plausibility of this. What would fall? What would you look for? Then I figured it out. The sky IS falling. It is ALWAYS falling and it has always been falling.

What is the sky? I am assuming the sky is the air. I will treat the air as a gas of single particles (which it isn’t, but that’s ok). So, why does this sky (air) do what it does? If you look at each individual sky particle, its motion is governed by two things.
1) Gravity. The gravitational force makes each particle fall. Without this, all the air would escape the planet. (this would be bad)
2) Collisions with other particles. This is what prevents the “sky” from collapsing.
I actually talked about this some before [when I talked about MythBusters and the Lead Balloon](http://www.dotphys.net/files/lead_balloon.html). The best way to see this interaction between gravity and collisions for a gas is with the excellent [PHET simulator](http://phet.colorado.edu/new/simulations/sims.php?sim=Balloons_and_Buoyancy)
![phet](http://blog.dotphys.net/wp-content/uploads/2008/09/phet.jpg)
If you adjust the “gravity” you can see that there are more particles down lower, but that a particle in between collisions looks like a projectile. Thus, I think it is ok to say that the sky IS falling.