I picked up this introductory astronomy course just a week before classes started. One of my other classes didn’t have enough students in it, so I got this instead. It’s a gen-ed science course for non-science majors. Since it was added late, there are only 12 students in the class.
I’ll be honest—there are some super awesome topics in this intro astronomy course. The historical stories and the “how do we know” stuff is great. HOWEVER, it’s also a really tough class.
I didn’t have time to build something from scratch, so I just went with the order and presentation of topics according to the textbook. This class uses Explorations – an Introduction to Astronomy, 9th ed (Arny, Schneider) McGraw Hill. It’s an OK, text with only a few areas that I don’t agree with. But let’s look at the first 4 chapters:
- Chapter 1: The sky. Celestial sphere, motions of the sky, seasons, phases of the moon.
- Chapter 2: Historical astronomy stuff. Mostly, this is the geocentric vs. heliocentric model of the solar system.
- Chapter 3: Gravity and Motion. BAM. Forces and motion, gravity, escape velocity.
- Chapter 4: Light and atoms. DOUBLE BAM.
Chapter 3 is bad. I mean, I have other classes that spend about 1/3rd of the semester on forces and motion and they don’t even get to the 1 over r squared version of gravity at any point. I think it’s possible to get students to understand most of the ideas in chapter 3, but not in a chapter-length amount of class time.
Oh sure. You could just tell the students everything they need to know about forces and motion. You could TELL them that a constant force makes an object have a constant acceleration. But research shows that this doesn’t really work. No, this is a tough concept and it’s going to take time to get it figured out.
Chapter 4 is even worse. The interaction between light and matter could be its own separate course. It’s not just a chapter. Oh, on top of that – there are these instructor power point slides. Here are three in a row that go something like this.
- Light is an electromagnetic wave.
- Light is also a particle.
- Which way light manifests itself depends on the situation.
That’s bad. Of course you know I don’t like the whole “light is a particle” thing.
OK, but there are some good things about this course. I have a small enough class that I can put in some extra stuff. We did some of the NextGEN PET units in class, and that went over fairly well. I have also been doing some of the great online labs from University of Nebraska-Lincoln (https://astro.unl.edu/naap/). Those are nice.
One other quick note. I think I am going to skip over all the planet stuff. It seems like it would just turn into a “memorize the density of Saturn” stuff. I really want to get to stars. There are some great stories about how we know stuff about stars.
I’ll keep you updated on the progress of the course.