Video Analysis of Soyuz MS-10

There should be a grave yard for blog posts that start, but never get published.  Fortunately, I have this site.  Here I can share with you my failed posts.  Get ready.

It starts with this epic video from the Soyuz MS-10 failed launch.

That’s pretty awesome.  It’s doubly awesome that the astronauts survived.

Ok, so what is the blog post?  The idea is to use video analysis to track the angular size of stuff on the ground and from that get the vertical position of the rocket as a function of time.  It’s not completely trivial, but it’s fun.  Also, it’s a big news event, so I could get a little traffic boost from that.

How do you get the position data?  Here are the steps (along with some problems).

The key idea is the relationship between angular size, actual size and distance.  If the angular size is measured in radians (as it should be), the following is true L = r\theta where L is the length (actual length), theta is the angular size, and r is the distance.

Problem number 1 – find the actual distance of stuff on the ground.  This is sort of fun.  You can get snoop around with Google maps until you find stuff.  I started by googling the launch site.  The first place I found wasn’t it.  Then after some more searching, I found Gagarin’s Start.  That’s the place.  Oh, Google maps lets you measure the size of stuff.  Super useful.

Finding the angular size is a little bit more difficult.  I can use video analysis to mark the location of stuff (I use Tracker Video Analysis because it’s both free and awesome).  However, to get the angular distance between two points I need to know the angular field of view—the angular size of the whole camera view.  This usually depends on the camera, which  I don’t know.

How do you find the angular field of view for the camera?  One option is to start with a known distance and a known object. Suppose I start off with the base of the Soyuz rocket.  If I know the size of the bottom thruster and the distance to the thruster, I can calculate the correct angular size and use that value to scale the video.  But I don’t the exact location of the camera.  I could only guess.

As Yoda says, “there is another”.  OK, he was talking about another person that could become a Jedi (Leia)—but it’s the same idea here.  The other way to get position time data from some other source and then match that up to the position-time data from the angular size.  Oh, I’m in luck.  Here is another video.

This video shows the same launch from the side.  I can use normal video analysis in this case to get the position as a function of time.  I just need to scale the video in terms of size.  Assuming this site is legit, I have the dimensions of a Soyuz rocket.  Boom, that’s it (oh, I need to correct for the motion of the camera—but that’s not too difficult).  Here is the plot of vertical position as a function of time.sideviewsoyuzaccel.png

Yes, that does indeed look like a parabola—which indicates that it has a constant acceleration (at least for this first part of the flight).  The term in front of t2 is 1.73 m/s2 which is half of the acceleration.  This puts the launch acceleration at around 2.46 m/s2.  Oh, that’s not good.  Not nearly good enough.  I’m pretty sure a rocket has an acceleration of at least around 3 g’s—this isn’t even 1 g.  I’m not sure what went wrong.

OK, one problem won’t stop me.  Let’s just go to the other video and see what we can get.  Here is what the data looks like for a position of one object on the ground.

Data Tool 2018-11-04 13-31-41.png

You might not see the problem (but it sticks out when you are doing an analysis).  Notice the position stays at the same value for multiple time steps?  This is because the video was edited and exported to some non-native frame rate.  What happens is that you get repeating frames.  You can see this if you step through the video frame by frame.

It was at this point that I said “oh, forget it”.  Maybe it would turn out ok, but it was going to be a lot of work.  Not only would I still have to figure out the angular field of view for the camera, but I need to export the data for two points on the ground to a spreadsheet so that I can find the absolute distance between them (essentially using the magnitude of the vector from point A to point B). Oh, but that’s not all.  When the rocket gets high enough, the object I was using is too small to see.  I need to switch to a larger object.

Finally, as the rocket turns to enter low Earth orbit, it no longer points straight up.  The stuff in the camera is much farther away than the altitude of the rocket.

OK, that’s no excuse.  I should have kept calm and carried on.  But I bailed.  The Soyuz booster failure was quite some time ago and this video analysis wouldn’t really add much to the story.  It’s still a cool analysis—I’ve started it here so you can finish it for homework.

Also, you can see what happens when I kill a post (honestly, this doesn’t happen very often).

Actually, there is one other reason to not continue with this analysis.  I have another blog post that I’m working that deals with angular size (ok, I haven’t started it—but I promise I will).  That post will be much better and I didn’t want two angular size posts close together.

The end.

Torque produced by balls in Fantastic Contraption

The fun part about exploring the physics of [Fantastic Contraption](http://fantasticcontraption.com/) is coming up with new setups to test ideas. Torque is not too difficult to set up. Here is what I did:

![Screenshot 04](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-041.jpg)

In this setup, I have a “turning ball” with a wood stick attached to the side. I increased the length of the stick until the ball does not turn. At this point, the torque from the gravitational force on the stick is equal to the torque from the ball. I can use [Tracker Video Analysis](http://www.cabrillo.edu/~dbrown/tracker/) to find the lengths of the two wood sticks. The torque from each stick will be its gravitational weight times the perpendicular distance to the center of the turning ball.

![Screenshot 05](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-053.jpg)

In order to calculate the gravitational force, I need the mass of each “stick”. [From my previous post](http://blog.dotphys.net/2008/10/physics-of-fantastic-contraption-i/), I found that the mass density per length for sticks was

![Screenshot 171](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-1711.jpg)

where mb is the mass of a ball and U is the diameter of a ball. I also need to find the horizontal distance from the center of the stick to the center of the ball. I will call the top stick 1 and the bottom 2. This gives:

![Screenshot 06](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-063.jpg)

Notice that stick 2 is connected at the same x-value as the ball, so I did not need to add the radius of the ball to its r value. Now I can calculate the total torque:

![Screenshot 07](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-073.jpg)

Although I do have an ok value for U in meters, I do not have a value for the mass of the ball, so no point in multiplying in the constant g. Anyway, let me test this. If this is true, how many balls could I hang right off the circle and lift? In that case, r would be 0.5 U (U is the diameter). So if the torque is around 3, I should be able to lift 6 balls (depending on the mass of string used). Let me try it.

![Screenshot 08](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-082.jpg)

I love it when a plan comes together. Actually, this was a little more than the weight of 6 balls, it also had the short length of water-sticks. But also, according to my calculation, this should not be able to lift 7 balls. Again, success.

Physics of Fantastic Contraption I

One of my students showed me this game, [Fantastic Contraption](http://fantasticcontraption.com/). The basic idea is to use a couple of different “machine” parts to build something that will move an object into a target area. Not a bad game. But what do I do when I look at a game? I think – hey! I wonder what kind of physics this “world” uses. This is very similar to [my analysis of the game Line Rider](http://blog.dotphys.net/2008/09/the-physics-of-linerider/) except completely different.

Fantastic Contraption gives the unique opportunity to build whatever you want. This is great for creating “experiments” in this world.

The first step is to “measure” some stuff. The game includes three types of “balls” and two types of connectors. The balls are:

  • Clockwise rotating
  • Counterclockwise rotating
  • Non-driven

Connectors:

  • wood lines – these can not pass through each other
  • water lines – these can pass through each other, but not the ground

First question: Do the different balls have the same mass? This can be tested by creating a little “balance”

![Screenshot 05](http://blog.dotphys.net/wp-content/uploads/2008/10/screenshot-052.jpg)

Continue reading “Physics of Fantastic Contraption I”

Bullets have a lot of kinetic energy (apparently)

I was recently re-watching a MythBusters episode and I found something I had wanted to explore previously (but accidentally deleted the episode). Here is a short clip from the “shooting fish in a barrel” episode:

Did you see what I found interesting? That big barrel of water left the floor from being hit by a bullet.
The question here is: Does a bullet have enough energy to increase the gravitational potential energy of the barrel to that height?

Continue reading “Bullets have a lot of kinetic energy (apparently)”

Amazing Blob Jump Launch Video Analysis

Can you believe it? Have you seen this video?

Are you thinking what I am thinking? WOW. How could these people not follow my rules for cool internet video. Once again, here they are:
1 Keep the camera stationary. This way I don’t have to keep moving the origin in the movie.
2 Don’t Zoom. Same reason, this video followed that rule.
3 Include a clear and obvious calibration object. A meter stick would work, or even a Kobe Bryant (I can look up his height). Maybe it could be a Ford F-150 that has a known length. Something!
4 Include the mass and height of all people involved.
5 Use high quality video.
6 Don’t talk about fight club – oh wait, wrong list.

Despite failure to follow all these rules, I have managed to analyze this video. Really when I saw it, I said “wow” – was that real? It looked real, but who would get shot up that high? (it is on break.com, so fake is a possibility).

Continue reading “Amazing Blob Jump Launch Video Analysis”