Isn’t it nice that I have written enough of these MacGyver science note posts that I no longer have to give some witty introductory comment? Oh, I guess that was an intro comment. OK—next time it’s just going to jump into the science.

**Picture triangulation**

MacGyver is trying to track down some dude. He finds a skyline picture that he drew and assumes the guy drew it from his apartment window (somewhere in Atlanta).

Oh wait! I think I can find out where this guy lives based on the drawing. True? Yes, this is true. If the guy drew a scale drawing, then yes—it’s entirely possible to find out where he drew it from. Oh, if he does an abstract drawing then all bets are off. Right?

There is a lot here, so let me go over two important ideas needed to backwards engineer this drawing.

First—angular size. You already know about angular size. The farther away something gets, the smaller it looks. If you like, you can make it so that someones head appears to be as big as your thumb. Yes, the human would have to be much farther away than your thumb (from your eye).

If the thumb covers up someone’s head, then the two objects would have the same angular size. How about a diagram to explain angular size? Suppose some object has a length of L and is a distance r away from an observer. It might look like this.

The blue circle is the observer and the red thing is the object. Yes, I drew it as an arc of a circle. If the object is far enough away, this is very good approximation. That means I can use the arc length equation. Remember that if you go all the way around a circle, then the total length is . That means I get the following:

Assuming the angle θ is in radians and not degrees. Oh, here is a more detailed explanation of the difference between radians and degrees. But in the end, if you know two of the things (angle, distance, size) you can find the third thing.

If MacGyver sees a building that he is familiar with, he knows the size of that building (or at least he could look it up). But he doesn’t know the distance or the angular size—bummer. If this was an actual photograph, it’s possible he could determine the angular size of the building based on the angular field of view for the camera. However, this is drawing, so the entire width of the picture could be just about anything.

Now for the next idea—triangulation. Suppose you know the angular position of two objects. From those angles, you can draw two lines at those angles. Where those two lines meet—that’s your location.

But you can see the problem, right? The triangulation depends on the angular size of the drawing and so does the distance to the objects. It looks like a dead end. But it’s not. Actually, you have enough information to math-it-out if you try (and boy did I try).

I’ll be honest. I worked on this problem for quite some time. Here is one of my earlier sketches for this calculation.

But yes, it does involve some trig.

**Hot wire a car**

Everyone wants to steal a car. Honestly, modern cars are fairly difficult to just take. There are four or three (depending on how you count) different classes of cars. Let me list them.

- Super old cars. These have a key that starts the car. That’s it. You can steal these—BUT YOU SHOULD NOT STEAL CARS.
- Just plain old cars. These are like super old cars, but they have a steering wheel lock. Sure, you can hot wire these—but you can’t turn the steering wheel.
- Modern cars. I think it’s cars after 1997. These cars have a chip in the key. No chip, no start. Well, you might be able to start it but the car’s computer won’t pump fuel or something like this.
- Even more modern. What about those cars with the key fob and you don’t even put the key in the car? You can’t really hot wire those either.

But check it out. This guy has a great video that goes over the different types of cars and how thieves would steal them (but don’t steal cars).

So, in this case MacGyver hot wires a car. It looks like an older model—so it’s at least plausible. What about the steering wheel lock? Maybe he just yanked on the steering wheel really hard and broke the steering wheel lock.

**Cleaning bottle bolo**

This is pretty straight forward. MacGyver uses a string to tie two bottles of cleaning solution together. He then swings these around and throws them at a baddies legs. The thing is a bolo. It wraps up his legs and he falls like an AT-AT on Hoth (but a lot faster).

**Trip wire fan**

MacGyver runs a fishing wire in a hallway and then back to the room. The wire then connects to the switch in an electrical fan. When someone steps on the fishing line, it connects the switch inside the fan and turns it on.

This should work.

**Bump key**

The bump key is a tool used to pick locks. The main goal in lock picking is to move lock pins up out of the lock cylinder so that you can turn the key. Here is a better explanation (I’m not really an expert here).

**Light explosion**

How do you make a distraction in a parking garage? One way might be to jam a charger for an electric car into a power box for the overhead lights. That’s what MacGyver did.

Would this work? It’s possible. Most car chargers run at 220-240 volts, but most overhead lights are fluorescent lights that expect 120 volts. If you double the voltage, then bad things can happen.

Basically, there is an electrical ballast inside the fluorescent light. This is a transformer that takes the 120 volts and ramps it up much higher (depending on the length of the tube) so that you can make light. If the voltage is too high, the ballast could go boom.