**Pre Reqs:** [Kinematics](http://blog.dotphys.net/2008/09/basics-kinematics/), [Momentum Principle](http://blog.dotphys.net/2008/10/basics-forces-and-the-momentum-principle/)
What are “numerical calculations”? Why are they in the “basics”? I will give you really brief answer and then a more detailed answer. Numerical calculations (also called many other things – like computational physics) takes a problem and breaks into a WHOLE bunch of smaller easier problems. This is great for computers ([or a whole bunch of 8th graders](http://blog.dotphys.net/2008/09/computational-physics-and-a-group-of-1000-8th-graders/)) because computers don’t mind doing lots of little problems. Why are they “basic”? Well, most text would say they are not basic. I disagree. I think this is a legitimate method for solving problems. In particular, this is a great way of solving problems that can not be solved analytically (meaning solving one hard problem).
**Numerical Calculations are Theoretical Calculations**
Let me just get this out of the way. Numerical calculations and analytical calculations are really in the same “class”. Often people will lump numerical in with “computational experiment” but that is a really bad thing to do. Some others will claim that there are three different “paths” to discover stuff in science: theory, experiment, and simulations. Simulations are the same thing as numerical calculations which are the same as theory. ([I wrote a letter about this in the American Journal of Physics](http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000076000009000797000001&idtype=cvips&gifs=yes))
**Example Problem**
Let me start with a problem that can be solved analytically. Suppose I have a ball of mass 0.5 kg and I throw this straight up with a speed of 10 m/s. How high will it go?