Course Reflections: Physical Science (PHSC 101)

The Course:

This is a 3 hour lecture-based course for non-science majors. I used the super awesome Next GEN PET. I feel like I have talked about this curriculum a bunch (since it has content similar to PHYS 142—physics for education majors). Here are some key points.

  • Content based on the Next Generation Science Standards. For me, this isn’t such a big deal—but it can be for those adopting the curriculum.
  • This is an interactive lecture-based course. This semester, I started with 50 students.
  • Students are supposed to have a workbook that they write in. We have a textbook rental system though. In order to prevent the students from buying a book (which would be about the same price anyway), I had the bookstore make the workbook into a non-writable rental book.
  • The course covers: Energy, Forces, Waves, Light.
  • Students are presented with videos of experiments and then asked a series of multiple-choice “clicker” questions.

The Good:

Let’s be honest. Most courses for non-science majors don’t really help them understand the nature of science. Based on my own informal measurements in the past, students’ understanding of science decreases after the course. That’s bad. It’s probably because they just see science as a bunch of facts that need to be memorized.

This course focuses on the model building aspect of science. Students collect data (from the videos) and use that to justify a model—rather than just being told an idea.

The course also encourages critical thinking and uses student discussion during class. I feel like there were a good number of students that really got something out of the semester.

Oh, one more “good”. I am part of an FOLC (Faculty Online Learning Community) – https://nextgenpet.activatelearning.com/about/faculty-online-learning. My discussions with them were great.

Homework was better than I thought. I used the online activities that come with the curriculum and then I created “turn in” sheets for the students. These were simple questions based on the online stuff. Many students didn’t do it and some copied—but it helps them realize they need to do the HW.

The Bad:

Although the content is essentially the same as the studio-class version of the material, I don’t have much experience with the lecture version. Here are some other random notes about things that didn’t work out so great.

  • Clickers. I started off using the TurningPoint clickers (we already had these). For some reason, the receiver didn’t work on my macbook anymore (software update). Then later in the semester, they updated the PCs in the room and BOOM—clickers didn’t work there either. I eventually switched to plickers (https://www.plickers.com/library).
  • Student discussions. I need to get better at this part of the job (quote from Spider-Man: Homecoming). I just feel like there are small things in the class that can really throw off a class discussion. It’s tough. I need to start off with this more at the beginning and fight through the rough parts so that students get more accustomed to discussions.
  • Student participation. There are too many students that think they are watching a movie. They just sit there and play on their phone. I see them.
  • The workbook. I already mentioned that they didn’t really have a workbook. Towards the end of the semester, I started creating 1-2 page “notes” that had spots for them to write down the important stuff. A couple of students said they liked this.
  • Multiple-choice tests. I hate these.

The Future:

Here are the changes for the next time I will teach this course (next semester).

  • Change the content. I would like to cut out some of the activities and do more of the engineering-design activities.
  • Smaller room. Yes, I will be teaching the lecture-based course in the studio room. I would like to replace at least some of the videos with actual experiments.
  • One of my FOLC colleagues gives writing assignments. She tells the students to find some application of the content in real life. They have to submit a certain number of these and she just grades a few. I want to do this.
  • Plickers are better.

Course Reflections: Introductory Calc-Based Physics (PHYS 221)

The Course:

This is the calc-based physics course (the first semester). The students in the class are mostly:

  • Physics majors
  • Chemistry majors
  • Computer Science majors
  • Math majors

I don’t think there are any other students that take this. OK, I guess you could include pre-engineering—but technically they are still physics majors.

For the textbook, I use the super alpha awesome book Matter and Interactions (Wiley – Chabay and Sherwood). If you’ve read my stuff, you should know that I LOVE this book (and Bruce Sherwood and Ruth Chabay are both great people to talk to). Here is my previous review.

Just a few highlights of the curriculum.

  • Includes relativistic momentum and energy.
  • Focus on fundamental interactions and fundamental particles.
  • Ball and spring model of matter.
  • Three big principles: momentum, work-energy, angular momentum.
  • Explicit inclusion of numerical calculations.
  • I use Standards Based Grading with options for students to submit reassessment videos.
  • We often use multiple-choice questions in class with student response systems (clickers). Matter and Interactions has a nice set of questions to use.

Here is the course website.

The Good:

I always enjoy this course. The students are both diverse and great. They are at LEAST in Calc-I so that means they can probably do some algebra stuff. There are a good number of students that are in even more advanced math classes like Differential Equations and stuff. Oh, and it’s a great chance to get to know the new physics and chemistry majors.

The class isn’t too big (mine started around 30) so that it’s fairly easy to memorize names.

Maybe the best part of the class is watching student videos. OK, I really don’t like watching videos—it can get kind of boring. But I LOVE seeing students make terrible videos and then get better and start figuring things out. It’s awesome when students have never made a video and are afraid to do it, but then really get into it.

Students eventually figure out that I’m not just assessing their videos, but they are learning by making the videos.

One other thing I liked—I always like it: speed dating physics problem solving. Here is a twitter thread on speed dating (from another class).

Also, I did assign and collect homework. I didn’t really grade it (I gave them a score), but it’s like free points and maybe it helps them practice.

One last “good”. I put together this video tutorial on numerical calculations that looks at an object falling on the surface of the moon. I think it’s pretty good. Not sure how much the students used it though.

The Bad:

Yes, there was some bad stuff. Sometimes I felt like students were just sitting there. Even when I was doing interactive activities, they had this blank stare (it seemed). Maybe it was the class time (9:30 AM)—although that doesn’t seem too early. I really don’t know what the problem was. For the most part they were fine.

Another big problem—speed dating. Oh, I get it. Students don’t want to participate. They want to just sit there and take in the fire hose of learning (they think that works). But in the end, most of them seem to get some positive things out of the speed dating. But the room was not super great for this. It’s a standard lecture hall—so I didn’t really have places to put boards. I tried using very small boards, but it just wasn’t perfect.

One final problem—a good number of student just never seemed to fully grasp numerical calculations.

The Future:

Here are some ideas for the future.

  • Mounted white boards. If I have to be in that lecture hall, I want to find some ways to put boards somewhere around on the walls.
  • Plickers. I’m ditching the TurningPoint clickers. I’m tired of constant updates that bork the system. I get it—they want me to upgrade. Not upgrading again. Oh, also with Plickers it shows the student name over their head when they vote.
  • More in-class stuff. More group problem solving. More activities. More focus on numerical calculations.
  • I should show the students more of the awesome physics (like stuff from my blog). I don’t do this enough because I get so busy with getting through different topics—but I think the students really like these things. Who cares anyway, it’s the stuff that I love.