5. DOING STUFF A BUNCH OF
TIMES: PYTHON FUNCTIONS

Maybe we should do a quick review. Here’s what we have done so far:
e Introduced the idea of a numerical calculation with simple 1D kinematics.

e Looked at more difficult problems involving non-constant forces—the simple harmonic
motion for a mass and spring. Then we did another non-constant force: air resistance.

3D objects and vectors and stuff.

e Modeling crazy complicated things that everyone likes to pretend are easy—Ilike a
pendulum.

That’s what we’ve done so far. Now for some more python-specific stuff.

WHAT IS A FUNCTION?

I like to think about python functions like they are mathematical functions. This is nice
because you can make a python function that looks just like a normal plain math function.
Suppose we have the following:

g(x) =2x3—3x+2

This says that we can give a value of x to the function g and it returns some value. If you
give it the value x = 0, you get back the value of 2. Right? Let’s build a python function
that does the same thing.

1 Web VPython 3.2

2

3 def g(xt):

4 gtemp = 2xxt*x3 —3kxt+2
5 return(gtemp)
6
7
8

print("g(o) = ",qg(0))

Some comments:

* You can create a function by starting with def and then giving it some appropriate name.
You can’t start your function name with a number and it can’t be a reserved word (like

while or print).

e In definition of the function, you need to tell it what things it is expected to receive. Here,
I’'m passing something called xt. Yes, we want g as a function of x but I like to use
temporary names (like xt) to distinguish between global variables and variables that are
just used in the function.

 The function starts after the colon and everything that is tab-indented is part of the
function.

* You can do stuff (like calculate a temp value for g) and then the return () is the output.

Let’s use this function to make a graph of g(x) from x = 0 to x = 2.

3 def g(xt):

4 gtemp = 2%kxtxk3 —3kxt+2

5 return(gtemp)

6

7 print("g(0@) = ",qg(0))

8

9 gl = graph(xtitle="x",ytitle="g(x)",width=500,height=250)
10 f1 = gcurve(color=color.blue)
11

12 x =10

13 dx = 0.01

14

15 while x<2:

16 fl.plot(x,g(x))

17 X = X + dx

18

19

Notice that I have the variable x that goes from O to 2 (just like did with other stuff). The
cool part is that I can treat g(x) just like a variable. I can put it in the plot function and it
will go ahead and pass the current value of x to the function which returns the calculation.
Here’s the graph.

13

10

g(x)

How about a useful example?

THE QUADRATIC EQUATION

Suppose I have a quadratic function that is set to zero. The generic form looks like this:
0=ax*+bx+c

This has the solutions:

—-b i\/b2 —4ac

2a

X =

Let’s make a generic python function that gives the two solutions for this polynomial. Here
it is.

def quads(a,b,c):
x1 = (-b+sqrt(b*x2-4xaxc))/(2x*a)
X2 = (-b-sqrt(bxx2-4xaxc))/(2xa)
return(x1, x2)

print(quads(2,-3,-7))

©OCoOoONOULL B WI

This is not a perfect function (because it’s possible to give it some parameters that do not
have real solutions. We can deal with that later. The important thing is that this function,
just like the actual quadratic formula, gives us TWO values. Here, I calculate these as x1
and x2.

But how does a function output two things? It does it as a list. When you run the above
code, you get the following:

[2.76556, -1.26556]

This is a list of the two solutions. If you want to print them separately, you could use this
code.

/

8 print("x1 = ",quads(2,-3,-7)[0])
9 print("x2 = ",quads(2,-3,-7)[1])
10

The quads (2,-3,-7) [0] refers to the first item in the list and quads (2, -3,-7) [1] is
the second item in the list. Don’t worry—we will get into lists later.

MAXIMUM RANGE FOR A PROJECTILE

[feel like it’s fairly common knowledge that the maximum range for a projectile is when it’s
launched at a 45 degree angle above the horizontal. I’'m not even going to derive this.
HOWEVER—you have to be careful. This 45 degree angle is only true for a ball that is
launched from the ground level and lands back on the ground. It also assumes no air
resistance.

OK, let’s tackle this problem in a couple of different ways. First, 'm going to get an
expression for the horizontal distance as a function of launch velocity and angle and starting
height. Then we can plot this for different values of launch angle.

Here’s some physics. Suppose I have the following.

We can break this trajectory into a motion in the x-direction and a motion in the y-direction.
The two motions are independent except for the time they take. In the x-direction, the
acceleration is zero and it starts at x = 0 and ends at some value x. With that, we have the
following kinematic equation.

X = vy(cos 0)t

In the y-direction, the ball starts at y = h and ends aty = 0.

1
0= h+v(sin)t = — o1

We can use the quadratic equation to solve for the time from the y-motion. But you know
what? I'm not even going to do that symbolically—I already have a quadratic formula
function from above? This quadratic formula will give me two values for time. One of those
times will be negative—and we want the positive version. With that time, I just plug the
time into the x-equation to get the horizontal distance. Let’s try it out.

3 def quads(at,bt,ct):

4 x1 = (-bt+sqrt(btxx2-4xatxct))/(2xat)
5 x2 = (-bt-sqrt(bt*x*2-4%atkct))/(2*at)
6 return(x1,x2)

7

8 v0=3

9 theta = 30%xp1i/180

10 h = 1.1

11 g = 9.8

12

13 a = —-.5x%¢g

14 b = v@xsin(theta)

15 ¢ = h

16 t = quads(a,b,c)[1]

17 x = vO@xcos(theta)xt

18 print("x final = ",x," m")

19

20

Here I'm using that same quadratic formula function. I changed the input variables so that
they would be different than the global a, b, and c. But you can see how awesome this can
be. I don’t need to use symbolic expressions for a, b, and ¢ and simplify the equation.
Remember, I'm just dealing with numbers so I might as well let python do all the work.

When this runs, I get two values for the time—it’s the second one that is positive. So I'm
using that time to calculate the final position and print it. Nice.

x final = 1.69128 m

But this just gives us the final x-position for one launch angle. We are going to put all of
this stuff into another function.

8 def xfinal(vet,thetat,ht):

9

10 g = 9.8

11

12 a = —.5%g

13 b = vOtksin(thetat*pi/180)

14 c = ht

15 t = quads(a,b,c)[1]

16 xt = v@txcos(thetatxpi/180)x*t
17 return(xt)

18

Yes, the default version of sine and cosine take the angle in radians—but I like to think in

terms of degrees. There is a built in function to convert from degrees to radians, but I just

do it myself.

Now we are ready to roll. I'm going to pick a value of vO and h and then keep changing the

launch angle. I will then plot the final position as a function of launch angle. Here’s the

code (after the two functions above).

10

19
20
21
22
23
24
25
26
27
28
29
30
31
32

22

gl = graph(title="x-range as a function of angle",ytitle="x range [m]",
xtitle="theta [degrees]",width=500, height=250)
f1 = gcurve(color=color.blue)

theta = 0
dtheta = 0.1

vo=3
h =1.1

while theta<90:
fl.plot(theta,xfinal(v@,theta,h))
theta = theta + dtheta

Notice that I just call the xfinal function right in the plot function—that’s just how I like it.

Here’s the output.

x-range as a function of angle

_—

Y
o

29.5,1.70

x range [m]
= =
o Ul

=
U1

0 10 20 30 40 50 60 70 80
theta [degrees]

From this, you can see that an angle of 29.5 degrees gives the maximum range. Notice that
is NOT the common 45 degrees.

HOMEWORK

» Use the code above and let h = 0. See what you get as the maximum range.

o If you increase the value of h, what happens to the angle of maximum range?

e Modify the code so that it prints the maximum angle instead of reading it from the graph.
e Is it possible that the maximum angle would be greater than 45 degrees?

Key

Here’s a little snippet of code to get the angle of maximum range.

29
30
31
32
33
34
35
36
37
38
39
40
41

maxangle = 0
maxrange=0

while theta<90:
xrange = xfinal(v@,theta,h)
if xrange>maxrange:
maxangle=theta
maxrange=xrange
fl.plot(theta, xrange)
theta = theta + dtheta

print("angle of max range = ",maxangle," degrees")

Notice that I have two variables—maxangle and maxrange that both start off as zero.

When I calculate the range, I check if it’s greater than the maxes. If so, then I update those

values. It works.

THAT METHOD IS OUR ONLY HOPE TO CALCULATE THE

ANGLE FOR MAXIMUM RANGE. NO, THERE IS
ANOTHER.

That was what Yoda said about Luke Skywalker. But here I'm talking about python methods. So,

let’s do this range thing again. Instead of just calculating the theoretical final position of the

launched ball, we can instead determine where the ball ends up by doing a numerical calculation.

I can use the same code as before but just change the xfinal function. Check it out.

def xfinal(ve@t,thetat,ht):
g = vector(0,-9.8,0)
tt =20
dtt = 0.01
rt = vector(0,ht,0)
vt = v@txvector(cos(thetatxpi/180),sin(thetat*pi/180),0)
while rt.y>=0:

vt = vt + gxdtt
rt = rt + vtxdtt
tt = tt + dtt

return(rt.x)

e Y
AWNRPROCOVONOUNAWN

You can see that this is just your basic projectile motion calculation—but in a function. Yes, I'm
using velocity instead of momentum but that’s fine. Here’s the output.

x-range as a function of angle
2.0

X range [m]
= =
(@) ul

=
u1

0 10 20 30 40 50 60 70 80
theta [degrees]
angle of max range = 29.3 degrees

This looks like it works—but why is the curve jagged like that? This is an artifact of the numerical
method in the function. Since I have a time step of 0.01 seconds, it’s possible that two launched
balls could have slightly shifted ranges depending when that ball gets below y =0. It’s fine.

MAXIMUM RANGE WITH AIR RESISTANCE

Now for something super fun. Suppose we have a ball that we want to throw to achieve a
maximum range. Just for simplicity, imagine that the ball has a mass of 0.02 kilograms and
a radius of 0.05 meters. The ball is thrown with an initial velocity of 10 meters per second.
If the ball starts and ends at the same level, what is the optimal launch angle? Hint: it’s not
45 degrees. Oh, since this is just a normal ball we can assume that the drag coefficient is
0.47 and let’s use a density of air at 1.2 kilograms per cubic meter.

Remember that we can model the air resistance as:

air

— 1 P
F .. =—EpAC|v| %

Now I can just add this into the previous range function. OK, I should point out that I'm
not going to be using momentum. That’s because this version of the air force depends on
velocity instead. It’s not a big deal. Trust me.

Here is the new xfinal function.

8 def xfinal(vet,thetat,ht):

9 g = vector(0,-9.8,0)

10 m= 0.02

11 R = 0.05

12 C = 0.47

13 A = pixRx*2

14 rho = 1.2

15 tt =0

16 dtt = 0.01

17 rt = vector(0,ht,0)

18 vt = vOtkvector(cos(thetat*pi/180),sin(thetat*xpi/180),0)
19 while rt.y>=0:

20 F = mxg —.5%rhoxAxCxmag(vt)**x2xnorm(vt)
21 vt = vt + Fxdtt/m

22 rt = rt + vtxdtt

23 tt = tt + dtt

24 return(rt.x)

25

I don’t really have any comments about this code. It’s pretty much just like the last time we
did a calculation with air resistance except that it’s in a function.

Here’s the output

x-range with air

X range [m]
N (OV) EAN ol (@)

-

0 10 20 30 40 50 60 70 80
theta [degrees]

max range = 5.7173 m
max angle = 40.4 degrees

You can see the maximum angle is indeed LESS than 45 degrees.

HOMEWORK

» There are just too many questions here, but I will list a couple.

» How does the optimal launch angle depend on the launch speed?

¢ What happens if you put this up on a hill—like in the case without air resistance?
» How does the launch angle change with mass?

» Will the optimal launch angle ever be GREATER than 45 degrees when on flat ground?
Hint: the answer might surprise you.

Key

There is no key for these questions.

