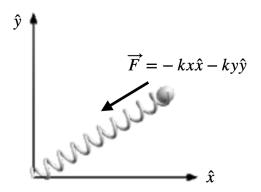
DUVC	2220
PHYS	33 2 U

Name:

Test Work Energy and Stuff

Show ALL STEPS. Your score will be based on your presentation of your solution, not just your final answer.

1. Given a force of $\vec{F}=xy\hat{x}-y^2\hat{y}$, find the work done going from the point (0,0) to the point (2,1) along a parabolic path ($y=\frac{1}{4}x^2$).


2. An object is near the Earth (with a mass M_E) a distance r_1 from the center with a mass

$$\vec{F}=-G\frac{M_Em}{|\vec{r}|^2}\hat{r}$$
. The object then moves to a further distance of r_2 . Show that the work done by gravity is equal to negative the

change in gravitational potential energy where:
$$U(r) = -G\frac{M_E m}{r} \label{eq:U}$$

Hint: you can use
$$\vec{dr} = dr \hat{r}$$

3. Below is a 2D spring with an unstretched length at the origin. Is this force conservative (hint: yes)? Create a potential energy for this force in the form of U(x,y). A ball of mass m starts at position (x_1,y_1) with a velocity v_1 . What is its speed when it reaches the origin?

4. Consider the following 2D potential:

$$U(x,y) = 2x^2 - y^2 - xy$$

- a) Compare the magnitude of the force at point 1 (0,0) and point 2 (1,2).
- b) Is this a conservative force? Justify your answer.
- c) Calculate the change in kinetic energy of the particle as it moves from point 1 to 2 under the influence of this force.